If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-25x+9=0
a = 2; b = -25; c = +9;
Δ = b2-4ac
Δ = -252-4·2·9
Δ = 553
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-\sqrt{553}}{2*2}=\frac{25-\sqrt{553}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+\sqrt{553}}{2*2}=\frac{25+\sqrt{553}}{4} $
| 6x-4+2x=30+8 | | 0.03x-0.6=24 | | 5a-2(2a-7)=2(3a-1)+7/2 | | x/4=49/7 | | Q=100-5x+60 | | 64=1/2a4 | | (x-6)+(x+3)+x=180 | | -20+3m=-43 | | 8x-5=6-5x | | 13/11=p/16 | | 5x+6x-2x-5=40 | | x+x-6+x-3=180 | | x-6+x+3=180 | | 22=2+37x+16x^2 | | 6^(x+6)=4 | | x-6+x+3+x=180 | | R=A/1=n | | 7x+29=5(x+3) | | 7x=19=5(x+3) | | −8(x+3)+252=19+17 | | 2(10z+4)-7=-4(-5z+5)21 | | 4m-2m(m-3)=7m-14 | | xx5-10=25 | | 3t−18=4(−3−3/4t) | | 31x-32=-52x+134 | | 4x=2x+120 | | 13+6u=-4u-67 | | 4c+24=30-2c | | 20(3x-7)+15(2x+5)=12(14-x) | | (-2/x+4)=(-5/2x+8)+1 | | (x-7)/4=8 | | 7+3k=3(k+32)-89 |